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Information-Theoretic Distance Measures and a Generalization of Stochastic Resonance
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We show that stochastic resonance (SR)-like phenomena in a nonlinear system can be described in
terms of maximization of information-theoretic distance measures between probability distributions of
the output variable or, equivalently, via a minimum probability of error in detection. This offers a
new and unifying framework for SR-like phenomena in which the “resonance” becomes independent
of the specific method used to measure it, the static or dynamic character of the nonlinear device in
which it occurs, and the nature of the input signal. Our approach also provides fundamental limits
of performance and yields an alternative set of design criteria for optimization of the information
processing capabilities of nonlinear devices. [S0031-9007(98)07277-9]

PACS numbers: 05.40.+j, 02.50.Wp, 47.20.Ky, 85.25.Dq

The stochastic resonance (SR) effect [1] is generallypling to basic information processing capabilities/limits
quantified in terms of a maximum (as a function of the in-that can be exploited to characterize system behavior.
put noise intensity) of a performance measure, e.g., output Information-theoretic concepts such as entropy and mu-
signal-to-noise ratio (SNR). However, a complete chartual information have been used previously in the study
acterization of system performance, in the presence aff SR [2]; however, the resonance was quantified via an
underlying randomness, requires knowledge of the whol@put-output matching of signals, and not via the separa-
probabilistic structure of the output, and this can be fullytion of output probability distributions. The definition of
retrieved from the spectral properties only when the sysSR in terms of an optimal detection formulation has been
tem is linear, and operated in the Gaussian noise regimeapplied recently [3], but only to detectors operating on the
Hence, any measure of information processing perforspectrum of the signal; this represents a restriction in de-
mance of a nonlinear system, based on spectral progector structure. Our results will, therefore, complement
erties alone, will capture only a few aspects of systenand generalize that work in several aspects. The defini-
performance. Indeed, any definition of SR used as a gerion used here is completely general and applicable to any
eral measure of information processing performance mugype of (static or dynamic) nonlinear device, operated in a
utilize the whole probabilistic structure of the problem. noisy environment.

Moreover, in order to have practical applicability for a A common (and fundamental) criterion of detector
given class of problems the definition must represent aptimality [4] is minimization of the error probability g
fundamental (or universal) limit of performance for this defined as

qlass. For instance,' in detection _applications a d_e_fini- Pr = qPr + (1 — q)Py, 1)
tion of SR must be linked to the limits of detectability , . ,

of a signal, otherwise the “best” preprocessor (the ond'here Pr is the probability of false alarm (decidd,
giving the best “resonance” according to the SR defini\When in factH, is true), Py is the probability of miss
tion) may not be part of the optimal preprocessor-detectofd€cide Ho when in factH, is true), andg and 1 — ¢
combination. are thea priori probabilities ofHy, and H;, respectively.

We consider here the problem of detecting a noiseVVe Se€ thatPr and Py together uniquely determine
corrupted signal that has passed through a nonlinedP€ Probability of errorPz. Another common optimality
system. An alternative definition for SR-like effects, criterion is maximization of the probability of detection
based on information-theoretic distance measures between Pp=1—- Py 2
probability d?s_,tributions, i_s proposgd: the minimal aChieV'(decideHl when H, is true) given a specified maximal
able probablllty Qf error in detection, on the System OUt-fy|se alarm levelPr = «, which is the Neyman-Pearson
put. The statistical framework for optimal detection IS (NP) formulation [4]. The optimal detector for both of

that of binary hypothesis testing: decide which of tWohege criteria (and others) takes the form of a likelihood
given probability distributiong, (the correct distribution 4+ (LR) test, i.e.

under the hypothesifly) or p; (the correct distribution

under the hypothesi#l;) is the correct one for an ob- decideH, if pi(é) = y vs decideH, if pi(é) >y,
served random quantity. In this general formulation, po(€) po(€)

based orprobability distributions there is a strong cou- 3)
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where p;/py is the likelihood ratio of the two distribu- thresholdy in (3) run through all values ir0, »); this
tions pg, p1 that characterize the observed random varivyields all possible pairs oPr and Pp. In particular,
able £ under hypothese#l, and H,, respectively. The for the (“optimal”) thresholdy = ¢/(1 — ¢) the resulting
thresholdy is chosen ag/(1 — ¢) in the case of mini- Pp (= Pg) is directly linked to thedz divergence via
mizing Pg, and is minimized subject t¢#; = « in the (1), (2), and (5) (since (1) and (2) then deliver optimal
NP case. values). This means that from a family of ROCs indexed
Given the LR detector, it is intuitively clear that the bestby some parameter (such as input noise variance), one can
possible detection can be achieved when the probabilitpbtain a plot of howdr varies by simply picking from
distributionspy and p; are separated as much as possiblegach ROC the value aPr obtained for the thresholg
in some sense; this would correspond to a maximizatiomnd plotting the correspondingr against the parameter.
of the statistical “visibility” of the signal in the noise. Thus, the ROCs for the optimal detector contain all the
Indeed, there is a strong connection between detectiomformation needed to determine an information-theoretic
detector performance, and information-theoretic distancémit for separation between signal and noise.
measures such as the Ali-Silvey distances [5]. These We now compute the ROCs for a specific nonlin-
distance measures are functionals of the likelihood rati@ar device, the single junction (rf) SQUID operating

of the form in the dispersive (i.e.norhysteretic) mode [6,7]. The
magnetic fluxx(z) (expressed as the dimensionless ra-
d(po, p1) = h[[ f<p1(§)>m(§)d§] tio of the actual magnetic flux to the flux quantum
po(£) @y = h/2e) through the loop can be described by the
where f is a continuous convex function and is an quatlonﬁof motiorr, ¢ = —U’(x) + x., whereU(x) =
increasing function. One notable example is obtained fop *° — 3,2 C0S2x) is the potential energy function and
h(x) = x and f(x) = —logx which yields the relative B = 27LI./®, is the nonlinearity parameter. (and /
entropy (or Kullback-Leibler distance). Another one is&r€ the loop inductance and the junction critical cur-
thedz divergence defined as rent, respectively). The externally applied magnetic flux

component,(t) = xo + x;(t) + y(¢) is the sum of a dc
po(§)dé () !e\_/el X0 E_% (to qbtain a symmetric trr_:nrjsfer character-
istic), an input signalx;(r) (to be specified later), and
noisey(r). The noise, regardless of its origin, is usually
effectively band limited by the SQUID bandwidth ';
(5) it is modeled as zero-mean Gaussian, with an exponen-
tially decaying normalized correlation coefficieR{r) =
where Py is the probability of error of theoptimal o %(y(¢)y(t + 7)), = e~I"V/7<, 7, being the noise corre-
detector, i.e., theninimal probability of error,which is lation time, ando the standard deviation. For our results
attained by the LR detector when the threshold is set t¢and in many practical applications) the noise bandwidth
¥ = q/(1 — q). Thus,Pr anddz uniquely determine . ! is considerably larger than the signal bandwidth, so
each other via a monotone function and are equivalenthat the noise(¢) appears white relative tg(s). In most
This establishes the connection between informationpractical cases we also havgél < r[l, so that the equa-
theoretic distances and detection. Moreover, it followstion of motion reduces to the quasistatic form (considered
that maximization ofdz in (4) over parameters for the through the remainder of this work)'(x) = x,.
output of a device is equivalent to a minimization @ The SQUID output is characterized by the “shielding
for detection on the output, and these two quantities botfiux” x,(¢r) = x(r) — x.(z). From the quasistatic equation
represent relevant theoretical limits of performance for af motion we can obtain the input-output transfer char-
device used as a preprocessor in detection. acteristicx,(r) = g(x;(¢)) by solving forx, as a function
It is a standard property of Ali-Silvey distances thatof x; [with xy = % and y(r) = 0]. This has been done
a nonlinear transformation cannot increase the value danalytically [6,7] in the nonhysteretic regifes 8 < 1,
any given distance (e.gdz) between two distributions to which we confine ourselves. The transfer functgpn
[5]. Thus, itis clear that a possible alternative definitionis plotted in Fig. 1;¢ is periodic inx; (only one cycle
of SR is the local maximization (over parameters)lef  shown), the slope of the central “linear” regime near the
(or minimization ofPz) for the output distributions corre- origin increases, and the minimal distanse; between
sponding toH, and H,, respectively, given a fixed value extreme points decreases, respectively, with increg8ing
of dx (or Pg) for the corresponding input distributions.  In our model, we have analytically (using the formulae
Alternatively, an output-input ratio (which cannot exceedfor transformation of probability densities through a
unity) of d¢ divergences could be considered. nonlinearity) calculated the ROCs for the NP optimal
In the NP formulation, detector performance is oftendetector based on the SQUID output for different values
evaluated via plots of the so-called receiver operatingf the parameters of the input noise, signal, and the
characteristics (ROCs) [4] in whicRp is expressed as nonlinearity. Here, the measured quantjtys the output
a function of Pr. To generate a ROC, one lets the x,(z) at a fixed timer when the inputx;(¢z) has a fixed
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for which we have the well-known [5] relation

q

df<po,p1>=f ‘(1 — g

- 1
Pg =5 — 5dz(po,p1),
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0.15 ‘ ‘ the input noise variance> but changedu accordingly
so that on the noise corrupted inpBg, dz, and SNR
01t LTINS ] (here defined ag?/o?) have all been held constant in
S each family of ROCs. (This is possible for a Gaussian
0.05} P ' \,\\ 1 distribution.) The results are displayed in Figs. 2 and 3.
Two asymptotes exist in all the ROC families. One is
X ok ' obtained when the input noise variance approaches zero
S N and the ROCs tend to those for two Gaussian distributions
-005F N\ 1 (since the transfer function then acts essentially linearly),
N /! as can be seen in the leftmost part of all ROC families.
0.1t ] The other asymptote is obtained when the noise variance
tends to infinity andpo ,pio) both collapse to the dis-
o 005 o 005 05 tribution obtained by transforming a uniform distribution
X, through one period of the nonlinearity. In this case the

) . ROCs become a straight line with unit slope as in the
FIG. 1'( )O'latﬁe”‘)d ?f[gr‘:j rf(l)SQLi)l]D fgf‘nSferOC:ezL%CtigS“C rightmost part of all ROC families. From the ROCs
xs = glxi), X0 = 7 = 0], = 0. : . . .
line), 6.7 (dashed ?ine),zand.9 )()solid line). Tﬁe minimum and Fhedf divergence is pbtalned via (1), (2), and (5) by read-
maximum are separated by & flependent) distanc&y;. ing off the P, Pp pairs along a curve (corresponding to
the optimal threshold@) on the ROC surface, as indicated
. above for a one-parameter family of ROCs.
value equal td) underHy (no signal) andu (>0) under In Fig. 3 we see clear evidence of “resonant” behavior
H; (signal), respectively. Thus, undef, the(ot))utput in terms of local maximization of outputz for all values
is characterized by a probability distributiony” and  of g greater than 0.7, with a global maximum for input
underH; by another distributiorp?’). The corresponding variance zero. In the zero variance limit, the value of the
distributionsp.’, p" on the noise-corrupted input(r) +  Outputdz obtained is the same as the input value (except
y(¢) under Hy and H;, respectively, are two Gaussian Possibly for the highesp’ S) This is to be expected
distributions with the same standard deviatierbut with  since the input dlstrlbutlonpo pi) are highly localized
differing meansd and u, respectively. We have varied when o? (and therebyu) is small, so that the linear

FIG. 2. ROCs for the optimal (LR) detector on the output of an rf SQUID with Gaussian noise on the input and different input
dz-SNR levels. Thea priori probability ¢ for noise only is always 0.6, and the corresponding value g for signal plus noise

is 0.4. The left column of ROCs is for constant inplit = 0.318 (SNR = 0.5) and the right column is for inpufz = 0.538
(SNR = 2), where g in each column i%.9 (top), 0.7 (middle), and0.5 (bottom), respectively. For eaak?, the d¢ divergence

is obtained from the relations (1), (2), and (5) by reading off fhe P, pairs obtained from the curve (dark solid lines) on the
surface that correspond to the optimal threshple: ¢/(1 — g).
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FIG. 3. Outputd¢ divergence vs input varianeg® and 8 for
two different levels of inputdz: 0.318 (left) and 0.538 (right)

In conclusion, we have demonstrated that SR-like
effects are present even in the most basic instances of
information processing in a nonlinear device, and we have
related these effects to fundamental limits of performance
in detection. We used thér-divergence curves derived
from ROC curves for the optimal detector operating on
the output of a nonhysteretic SQUID to demonstrate
“resonant” behavior and found stronger “resonances”
for higher degrees of nonlinearity. In the small and
large noise limits, respectively, we saw the expected
asymptotes, and in all cases the output distaficewas
found to be maximal in the zero noise limit and minimal
in the large noise limit, as predicted by the properties of

(SNR = 0.5, 2.0, respectively). The curves corresponding to the dz divergence. The results were derived for a 1D

the ROCs in Fig. 2 are marked (dark solid line).

action of the transfer functiog near the origin dominates,
and linear transformation preservég divergence. In
the large noise limitp”’, p\°’ become identical and the
outputdz assumes its minimal valyé — 2¢|. The local

maxima in thedz curves occur Whep(()i), pi” obtain such

case; however, the ideas are quite general. In fact, the
dimension of the underlying detection problem (in the
sense of the number of samples of the observed output)
is not significant, and the ideas are (using more elaborate
theory/computational methods) applicable also to infinite-
dimensional cases with continuous time observations and
more complex signals. This will be the subject of future

a scale and position that the nonlinearity redistributes th@ublications.
probability mass to the output most efficiently, in the sense J.W.C.R. and D.E.A. acknowledge support from

of separatingy”’, p\°’. This matching betweep, . p.”

FOA, Project No. E6022 Nonlinear Dynamics; A.R.B.

and curvature) of the latter, in different regions.

The plots reveal that the local maximum in output

dr occurs when the mean (and mode)of the input
distributionpg') lies slightly to the right ofAx; /2, and the
value of u at resonance moves to thight as the input
dr increases ;((()i),p?) become more localized). This

is related to the fact that the slope gf to the right

of Ax;/2 is less steep than to the left which gives a
greater concentration effect when transforming probability

mass. For increasing inpdt the maximum in outpud ¢

becomes more pronounced since more localized (giveny)
) input distributions can better match local properties

of g. It also becomes more pronounced for higlis,
mainly because the first maximum nis then higher,

yielding a greater range on the output and thus greater
possibilities for redistributing probability mass. The local

minima in the output/z curves occur roughly whep is
atAx;/2. Wheng becomes too small no local maximum

exists, essentially because the height of the first maximum

in g decreases rapidly wittB and thereby compresses
the output distributionpio) to a region where most of
p(()o) resides. The behavior dfp as a function of noise
strength o for constantP in the ROCs in Fig. 2 is

qualitatively similar to thelr behavior of Fig. 3 and also

shows several qualitative similarities with earlier results
[3] obtained for a very different system and detector. The
resonance behavior displayed here is reminiscent of our
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